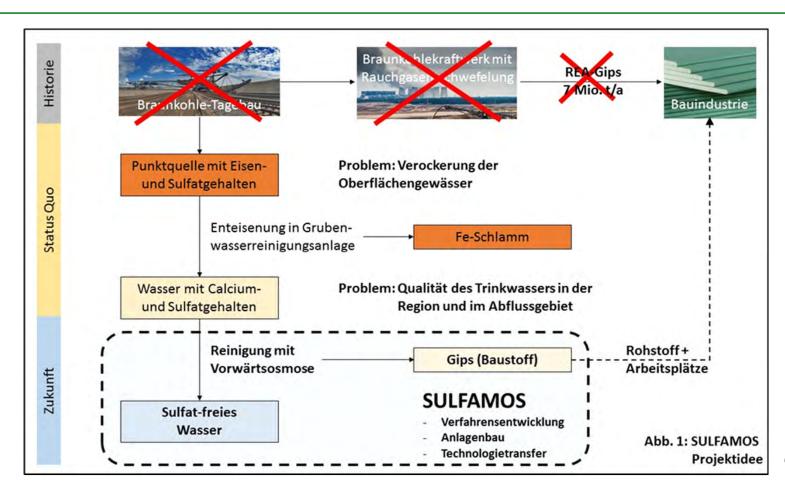


GEOS INGENIEURGESELLSCHAFT MBH



02.-04.09.2024

Gesamtziel des Vorhabens

Quelle: fluvicon

Presse

20 FOKUS: BETON IM UMBRUCH 1. Mai 2020 · Nr. 18/19

VDI nachrichten

Beton in der Kohlekrise

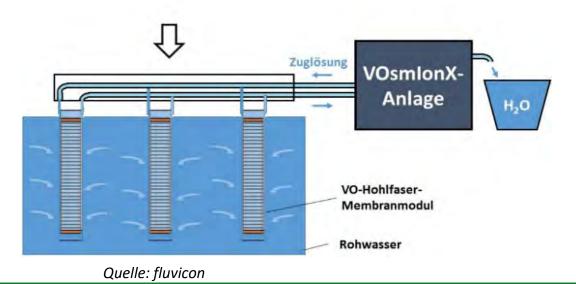
Ein anderer wichtiger Rohstoff aus der Entschwefelung der Kraftwerksabgase fällt künftig ebenfalls weg: Kalkstein der sogenannte Rauchgasentschwefelungsanlagenviel CO2 oder kurz REA-Gips. Hier werden im Jahr zwar nur weniger als 500 000 t verbraucht, aber ohne Gips wurde heutiger Transportbeton schon während der Fahrt zur Baustelle hart und wäre damit unbrauchbar. In Zukunft müsste dieser Gips also entweder vermehrt natürlich abgebaut oder recycelt werden.

SULFAMOS - Verbundpartner

Laufzeit: 01.05.2021 - 30.04.2024

Projektpartner

- G.E.O.S. Ingenieurgesellschaft mbH
- fluvicon Industries GmbH, Frickenhausen
- MionTec GmbH Leverkusen
- HTW Dresden, Lehrgebiet Wasserwesen



Projektziele SULFAMOS

- 1. Wiederverwendung von sulfatbelasteten Bergbauabwässern als Trink- und Bewässerungswasser unter Anwendung der Vorwärtsosmose (VO)
- 2. Fällung des Sulfates im Konzentrat als Gips
- 3. Weiterverwendung des Fällproduktes in der Baustoffindustrie

- Abbruchkriterien des Projektes Sulfatrückhalt Hohlfasermembranen < 90%
 - Fällungsprodukt muss den Anforderungen der Baustoffindustrie entsprechen

IGE

Entwicklung von Hohlfasermembranen, Außenschicht selektiv

Prototypen und Bau von Membranmodulen

Bau einer VO-Pilotanlage

Projektkoordinator, Laboruntersuchungen und Bau des Fällungsmoduls, Pilotierung vor Ort

Hydrodynamische und hydrochemische Modellierung, Analytik, Baustoffuntersuchung

Stellte Standort für Aufstellung der Pilotanlage zur Verfügung

Membranentwicklung

Entwicklung von Hohlfasermembranen, außen selektiv, Tests

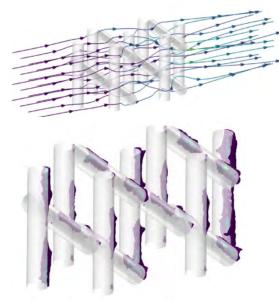
1. Spinnen

- 2. Nachbehandlung
- in Wasser

in Klimakammer

3. Tests

- Entwicklung eines Verfahrens zur Herstellung geeigneter Membranen zur Outside-In-Filtration, anschließend Bau von Membranmodulen die sich auszeichnen durch
 - Lange Lebensdauer
 - Einfache und effektive Reinigung



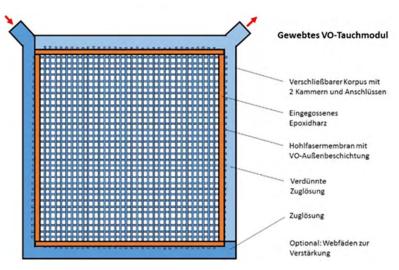
Hydrodynamische, hydrochemische Modellierung, Analytik, Baustoffuntersuchung

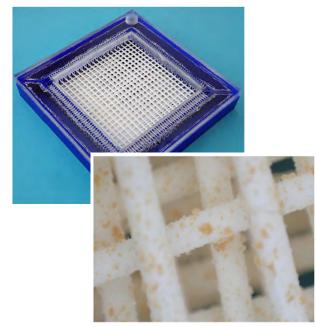
Sulfatfluss und Scaling

Hydrodynamische Beanspruchung der Membran

Hydrodynamischer Test

Untersuchung der Fällprodukte


Quelle: HTW



Entwicklung und Bau der Tauchmodule

Quelle: fluvicon

Flux zu gering, Strömungstechnisch sehr ungünstig

Test mit Grubenwasser, erfolgreich

Bau einer VO-Pilotanlage und Membranmodul Demonstrator

Quelle: MionTec

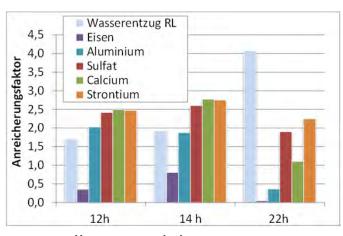
Design und Bau des Demonstrators

- Versuchsanlage als Hybridanlage ausgelegt:
 - Modul mit entwickelten HF-Membranen: Feed liegt an Außenseite der Membran an
 - kommerzielles Membranmodul (Aquaporin Inside®): Feed wird durch das Membraninnere geführt
- vergleichende Untersuchungen mit dem entwickelten und dem kommerziell verfügbaren Membranmodul
- Aufbereitung der Zuglösung: Umkehrosmose
- 2 Prozesseinheiten
 - VO Hybridanlage
 - UO-Modul

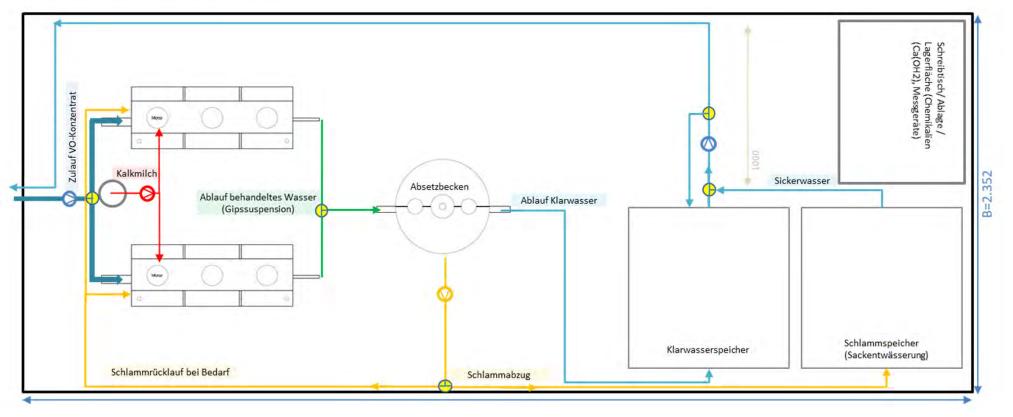
Laboruntersuchungen, Verfahrensentwicklung und Bau des Fällungsmoduls, Pilotierung vor Ort

Untersuchung Modellwässer

- Versuchsansätze mit unterschiedlichen c SO₄²⁻
- Kristallisationskeime


Untersuchung realer Konzentrate

Untersuchung Kontinuierliche Gipsfällung


 Fällungsprodukt baustofftauglich

Fällungsmodul

Aufbau Pilotanlage

- Hybride Versuchsanlage Anfang April 2024 in Betrieb genommen
- VO-Aufkonzentrierung erfolgt auf 1:2 mit kontinuierlichem Zuglösungsrecycling

Betrieb Pilotanlage

Betrieb Pilotanlage

Ergebnisse

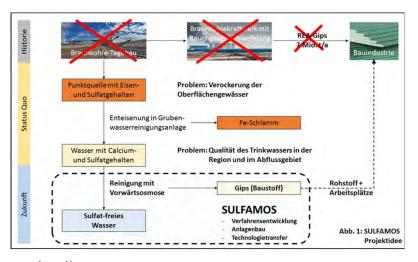
- Kontinuierlicher Einsatz der VO zur Sulfatabreicherung erfolgreich demonstriert
- Grubenwasser ca. $2500 3000 \text{ mg/l SO}_4^{2-}$
- VO-Betrieb bei Aufkonzentrierungsfaktor 2 (optimal)
- Membrananlagerungen reversibel, einfaches Rückspülen mit Produktwasser ausreichend
- VO-Betrieb reproduzierbar
- Flux stark temperaturabhängig
- Gewinnung von Brauch- und Trinkwasser noch nicht realisiert

Betrieb Pilotanlage

Ergebnisse

- Fällungsprodukt im Laborversuch entsprach den Anforderungen der Baustoffindustrie (85% Gips, 15% Calcit und Brucit, Eisen nur in Spuren). Einer Verwendung als Bauprodukt sollten die Nebenbestandteile nicht entgegenstehen (HTW – Laborbericht P5053)
- Aufgrund der kurzen Pilotierungszeit gelang es im Pilotversuch nicht, die Gipsqualität an die Anforderungen der Baustoffindustrie anzupassen (hoher Anteil Störstoffe Calciumcarbonat und Magnesiumhydroxid, Gipsgehalt mit 45% zu gering).
- Hierzu sind noch weiterführende Untersuchungen notwendig

Gipskristalle



Ausblick

- Gegenwärtig laufen noch abschließende Untersuchungen zum Tauchmodul
- Verbesserung der Membran-Performance
- Optimierung der Qualität des Fällungsproduktes, auch unter schwierigen Einsatzbedingungen
- Gewinnung von Trink- und Brauchwasser durch Aufbereitung der Zuglösung
- Folgeprojekte Partner gesucht

Zielstellung

Förderkennzeichen 02WV1573

Vielen Dank für Ihre Aufmerksamkeit,

Sie sehen Aufgaben. Wir Lösungen.

Ihre Ansprechpartner:

Dr. Roland Mayer/Isabel Jordan
Telefon: +49 (0)3731 369-140/252
E-Mail: r.mayer@geosfreiberg.de
i.jordan@geosfreiberg.de
www.geosfreiberg.de