

Flutungsmodellierung von untertägigen Steinkohlebergwerken mit finiter-Elemente **Methode**

Timo Kessler, Maria-Theresia Schafmeister

Grubenwassertagung Kassel23

18. Oktober 2023

1. Bestehende Modellansätze

Pond-and-pipe Ansatz (häufig verwirklicht als BoxModell 3D, GRAM o.ä.)

 grobe Finite-Volumenmodelle, die das Grundwasser über das Resthohlraumvolumen bilanzieren

- Strömungsfunktionen werden an Wasserübertrittsstellen zwischen den Volumina definiert (Strömungstyp, k_f-Wert, Porosität, leakage Faktor)
- Modellkalibrierung anhand von internen Wasserübertritten und Entnahmeraten (Pumpen, Wasseraustritte)

modifiziert nach Sherwood, 1997

(RHV)

1. Bestehende Modellansätze

<u>Vorteile</u>

- äußerst recheneffizient, große Gebiete modellierbar
- einfache Methode um Grubenflutungen und Schadstofffrachten (breakthrough curves) zu berechnen

Einschränkungen

- beschränkte Aussagen über den Grundwasseranstieg im Nebengestein möglich, kein Abbild der Hydrodynamik im Untergrund, insbesondere in den Grubenhohlräumen
- Vernachlässigung von Strömung aufgrund variabler Druckpotentiale
- Basis der Berechnung ist das Resthohlraumvolumen
 - \rightarrow große Unsicherheiten von bis zu 30 %

1. Alternativer Modellansatz

Finite-Elemente Modelle (z.B. mit Spring, FEFLOW, Multiphysics, o.ä.)

- Räumliche Diskretisierung: parametrisierte Modellzellen (= Nebengestein, Hohlraum, Verbruch, Klüfte)
- Berechnung der Grundwasserpotentiale (an allen Knoten)
- Kalibrieren mittels Druckverteilung, Wiederanstiegskurven, Förderraten

3D Druckverteilung

Kontinuum

2. Konzeptionelle Modellvorstellung

а

Umsetzung mit hydr.

Durchlässigkeiten

2. Wasseranstieg Grubengebäude

- Schachtberandung a ist undurchlässig
- Wiederanstieg nach Pumpenstop

2. Wasseranstieg Grubengebäude

7

2. Konzeptionelle Modellvorstellung

а

b

2. Wasseranstieg im Gebirge

- Schachtberandung a ist undurchlässig
- Streckenberandung b ist durchlässig
- Infiltration in Gebirge

Umsetzung mit diskreten Strukturen

2. Strömungspfade

- 1. Schächte \rightarrow Umsetzung als isolierte Hohlräume
- 2. Strecken und Stollen \rightarrow Umsetzung als diskrete Strukturen

Nicht (schwer) kombinierbar

- 3. Poröses Medium im Umgebungsgestein
- 4. Tektonische Störungen → Umsetzung mittels diskreter Strukturen oder spezifischer Materialeigenschaften
- 5. Geklüftetes Gebirge (typischerweise im Hangenden von Abbauen) → Umsetzung mit äquivalenten Durchlässigkeiten

3. Modellerstellung Bergwerk Westfalen

- "Insel"-Standort, hydraulische Randbedingungen definierbar
- Umsetzung mit FEFLOW

Wasserprovinzen an der Ruhr und Wasserhaltungsmaßnahmen der RAG

3. Diskretisierung des Modellraums

- Diskretisierung mit strukturierten Netzen (prismatische Elemente)
- Schichtenaufbau
- Hohlräume werden mittels diskreter Strukturen implementiert (Punkte, Linien oder Flächen)
 → diese werden geometrisch parametrisiert

- Möglichkeit unstrukturierter Netze (tetraedrische Elemente)
- Grubengebäude können als ortstreue Körper realitätsnah diskretisiert werden
- deutliche Optimierung des Rechenaufwands möglich

3. Modellstrukturen

- Störungen (vertikale Fließpfade meteorischen Wassers)
- Strecken und Schächte als eindimensionale diskrete Strukturen

 → Hauptstrecken auf vier Sohlen 1200m, 1035m, 945m, 850m u GOK
 → 7 Schächte
 (wassergefüllte Hohlräume mit niedrigem Strömungswiderstand)
- Sohlen in einheitlicher Höhenlage, als 5m mächtige Modellschicht

3. Grundwasser und Randbedingungen

- 3 Grundwasserleiter mit unterschiedlichen Potentialen (oberflächennahes Grundwasser, Kluftgrundwasser Turon, karbonisches Tiefengrundwasser)
- Teilweise gespannte Verhältnisse

3. Materialeigenschaften

- Die Aquifere werden mittels hydraulischer Durchlässigkeiten voneinander abgegrenzt
- Störungen werden als vertikale Infiltrationspfade mit hohen K_{zz} definiert
- Im Bereich von Abbauen oder verbrochenen Bereichen werden erhöhte äquivalente Durchlässigkeiten angesetzt

3. Stationäres Grubenwassermodell

- stationäres Modell versucht die Potentialverteilung während des aktiven Pumpenbetriebs abzubilden
- oberflächennahes Grundwasser unbeeinflusst
- Grundwasserabsenkung jedoch im Turon deutlich erkennbar

Modellschicht 3 (Deckgebirge)

Modellschicht 8 (Turon)

Modellschicht 12 (Karbon)

3. Stationäres Grubenwassermodell

• nach unten gerichteter Gradient zum unteren GW-Leiter (Turon)

Hydraulic head - Fringes -[m] 100...120.7 0...100 -100...00 -200...-200 -400...-300 -500...-400 -600...-600 -700...-600 -700...-600 -700...-600 -1000...-900 -11100...-1000

- punktuelle Zuflüsse in das Grubengebäude
- nahezu horizontaler Gradient im Karbon

Umwandlung in transientes Modell um den Grubenwasseranstieg zu berechnen

3. Ergebnisse Grubenwasseranstieg

- Messungen anhand von drei Beobachtungsbrunnen
 - → im Schacht (Sohle 4) schwarze Linie
 - \rightarrow im bergwerksnahen Gebirge (-1200m) grau gestrichelte Linie
 - \rightarrow im bergwerksfernen Gebirge (-1000m) schwarz gestrichelte Linie

Referenz-Modell:

Hohlräume sind hydraulisch sehr gut durchlässig \rightarrow Zuflüsse dominieren den Anstieg

Fließwiderstand in den Strecken/Schächten wird minimiert \rightarrow Verzögerung durch

Wasserspeicherung in Hohlräumen

sehr hohe Gebirgsdurchlässigkeit (bspw. durch starke Klüftung) \rightarrow Zustrom kontrolliert den Anstieg

4. Finite-Elemente Ansatz vs. pond-and-pipe

- die Abbildung von Bergwerksstrukturen, Hohlräumen und Störungen im Modell ist möglich, teilweise schwierige Abstraktion
- sehr variable räumliche Parametrisierungen, wie z.B. zeitabhängige Materialeigenschaften oder variable Druckhöhen in Grundwasserstockwerken
- die hydromechanischen Prozesse bestimmen den Grubenwasseranstieg und nicht die Volumenbilanz (Modellunsicherheiten)
- Grubenwasseranstieg im Schacht kann nicht losgelöst vom Wasseranstieg im Gebirge berechnet werden
- erheblicher Datenaufwand f
 ür Modellkalibrierung, jedoch k
 önnen bestehende Modelle sukzessive optimiert werden
- wesentlich höherer Rechenaufwand (Zeit, Kosten)
- einzelne Fließpfade und -zeiten können berechnet und dargestellt werden

+/-

4. Weiterentwicklung Modellstruktur

single Kontinuum

diskretes Hohlraummedium

äquivalentes poröses Medium

doppelte/multiple Kontinua

Glück auf.