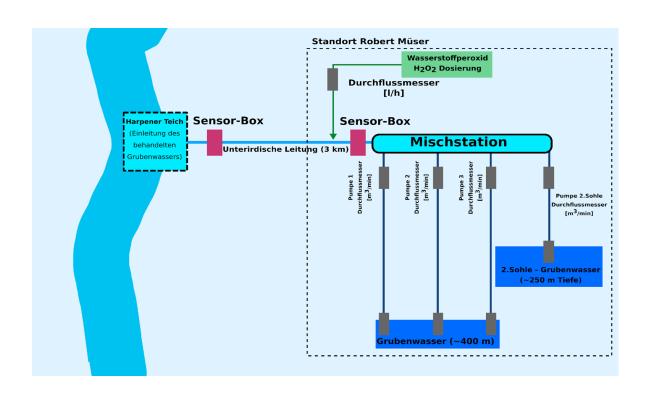


Optimierung der H₂S- Behandlungsstufe am RAG

Standort Robert

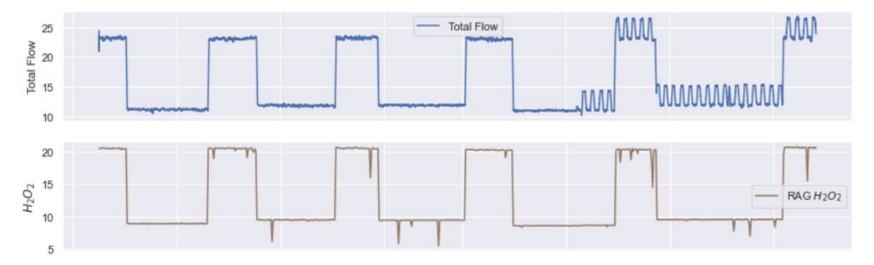
Müser


01.08.2021 - 31.01.2022

07.09.22 Kassel Kai Börsting

Übersicht

- 1. AusgangslagemStandortRobertMüser
- 2. Dosierung+ Optimierungspotenziale
- Wie soll daserreichtwerden?
- 4. Ergebnisseder Datenanalyse
- 5. EntwickelteDosierungen
- 6. Testwoche
- 7. Erkenntnisse


Ausgangslage am Standort Robert Müser (1/2)

- Grubenwasser wird aus 400m und 250m gehoben
- Behandlung des mit H₂S-belasteten Grubenwassers mit H₂O₂
- Einleitung in die Harpener Teiche

Ausgangslage am Standort Robert Müser (2/2)

- H₂O₂-Dosierung abhängig von der Durchflussrate
- $\underline{\text{Ziel}}$: $c(H_2S) < 0.1 \, mg$ n der Einleitstelle

Dosierergebnis an der Einleitung

- Laborergebnisse bestätigen erfolgreiche Behandlung
 - \circ c (H₂S) < 0,1mg/l
- Jedoch:
 - \circ Halbmonatliche Labormessungen \rightarrow Auftreten von Schwankungen?
 - Gaslogger detektiert H2S-Spitzen in der Luft → Gelegentlicher Geruch

Optimierungspotenzial

Optimierung delH₂S-Behandlungsstufe durch verbesserte Dosierung

1. Optimierung de**s**H₂O₂-Verbrauchs

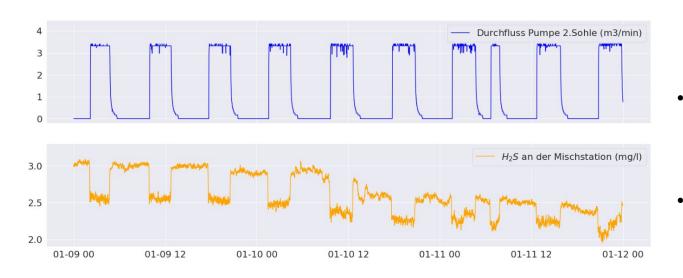
Verringerung des Geruchs an der Einleitung

Wie soll das erreicht werden?

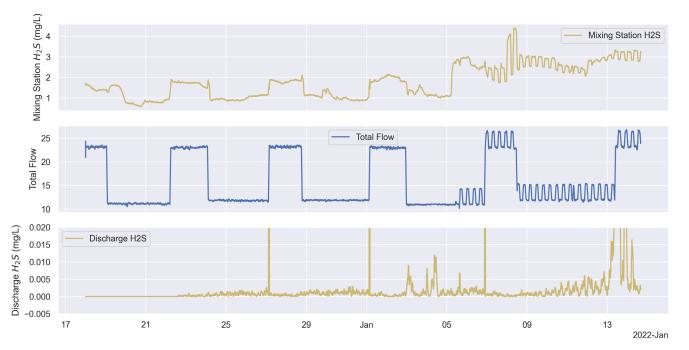
- Einsatz vorH₂S-Sensorenan Mischstation und Einleitung
 - Online- und Echtzeitmessung zur Datengewinnung und Analyse

- Einsatz künstlicher Intelligenz
 - Entwicklung eines intelligenten Steuerungssystems, um die optimale Dosierung von H_2O_2 vorherzusagen (→ Daten)

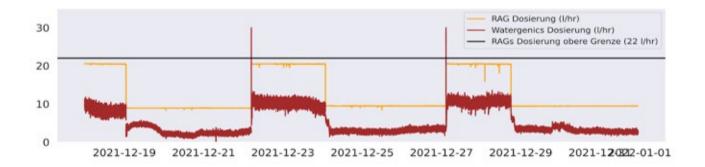
Eingesetze Hardware



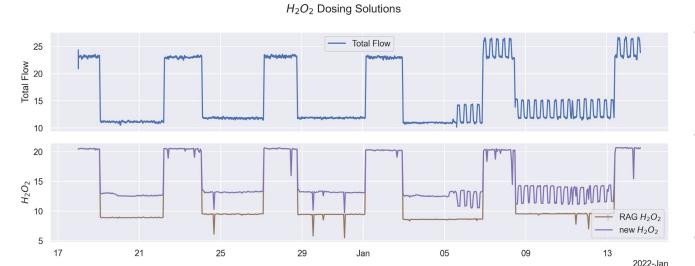
Ergebnisse der Datenanalyse (1/3)


- Peak erkennbar bei Aktivierung großer Pumpen
- Schnell abfallend
- An Mischstation und Einleitung messbar

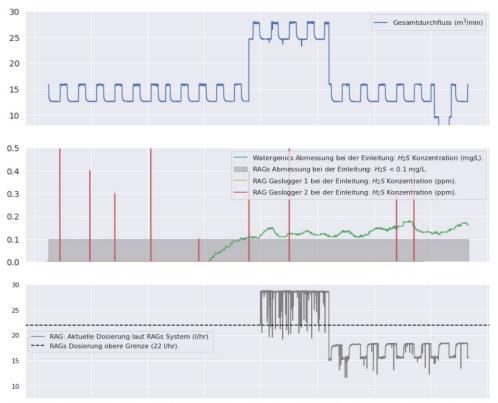
Ergebnisse der Datenanalyse (2/3)


- Keine Peaks bei Aktivierung kleinerer Pumpe
- Erniedrigung deH₂S-Werte während Pumpenaktivität
- FolgerungH₂S-Werte in zweiter Sohle wesentlich niedriger oder null

Ergebnisse der Datenanalyse (3/3)


- Kleinere
 Konzentrationsspitzen
 v.a. in niedrigen
 Durchflussraten an
 Mischstation u.
 Einleitung
- Mögliche Ursache für Geruchsentwicklung

Analytische Dosierungen (1.)


- Einsatz d. KModells
- Einbeziehen d. Durchflussrate sowie-Konzentration an Mischstation
- Kalkulierte Dosierung ca. 40% geringer

Alternative Dosi er ungen (2.)

- Angepasste
 Dosierung zur
 Geruchsreduktion
- Abfangen kleiner Spitzen während Niedrigdurchfluss
- Höher als vorherige Dosierung

Testwoche

- Dosierung ab 28.01.22
- Laborwerte bestätigen Wirksamkeit
- Gaslogger zeigt mind. drei Spitzen an
- Vermutung: Teilweise zurückzuführen auf Gas-Phase

Erkenntnisse der RAG

Mehr Informationen über das System wurden zur Verfügung gestellt.

Intuitive Annahmen konnten empirisch bestätigt werd
 an
 (atenanalyse)

• Ergebnisse zeigen, dass das System bis auf kleinere Nachbesserungen stabil läuft

H₂S-Gasphase spielt eine Rolle

Erkenntnisse der Watergenics

Möglichkeit mit historischen Daten zu arbeiten, zu lernen und auszuprobieren

Wichtige Erfahrungen und Einblicke in et Sechandlung in der Bergbauindustrie.

 Erkenntnisgewinne bezüglich des Einsatzes der Hardware und Kontrollsysteme in einer sehr anspruchsvollen Arbeitsumgebung.

Glückauf!

